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The resonant conditions for the Mathieu}Du$ng oscillator are determined, and the
resonant orders for the inside and outside of the generic separatrix are (M : 1) and (2M : 1)
respectively. The excitation strength for the onset of a speci"c resonance in the generic
separatrix band is predicted analytically and numerically through the incremental energy
approach and the energy spectrum methods. For comparison of the separatrix splitting
theory, the widths of the generic separatrix band are computed through the maximum and
minimum energies. The bandwidth is not linear to the excitation strength, and it is strongly
dependent on the resonance. The results can be applied to the post-buckled structures under
parametric excitation forces. However, the chaotic motion in the resonant separatrix
band needs to be investigated for a better understanding of chaotic motion in the
Mathieu}Du$ng oscillator.
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1. INTRODUCTION

Consider a Mathieu}Du$ng oscillatory with a twin-well potential
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cos (Xt)]x#a
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where a
1
'0 and a

2
'0 are system parameters, Q

0
and X are the excitation strength and

frequency respectively. The above equation can be derived from the buckled structures
under the longitudinal, periodic forces through the Galerkin method. The system
parameters a

1
and a

2
are linear (relevant to buckling load and bending moment) and

non-linear terms (relevant to longitudinal internal normal forces). To point out the
engineering signi"cance of equation (1), a simply supported, initially straight, slender rod
experiencing large deformation subjected to an axially compressive force P#P

0
cosXt at

one end, shown in Figure 1, is considered as an example for illustration.
The time-independent H

0
(unperturbed) and time-dependent H

1
(perturbation) in the

Hamiltonian of equation (1) are
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For the unperturbed system of equation (1), there are two homoclinic separatrices related to
the saddle point (0, 0) for H

0
"E

0
"0. Such two generic separatrices separates the motions

of the unperturbed Mathieu}Du$ng oscillator into inside and outside periodic motions.
Hence, under a periodic excitation, the resonant characteristics of chaotic motions inside
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Figure 1. A non-linear, planar rod subjected to the compressive force P#P
0
cosXt.
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and outside the generic separatrix of the Mathieu}Du$ng oscillator are distinguishing
themselves. The motion bands associated with the separatrix inside and outside regions are
termed the inner and outer separatrix bands respectively. In this paper, the
resonance-characterized chaotic motion in the separatrix band of the Mathieu}Du$ng
oscillator will be investigated.

The Du$ng oscillator as a typical example in mechanical systems has been extensively
investigated (e.g., reference [1]) since Du$ng [2] investigated the dynamic behavior of such
a non-linear oscillatory system in 1918. The non-linear behavior of the Du$ng oscillator
with week non-linearity was further investigated through the perturbation approach.
However, the perturbation analysis only gave the local non-linear behavior. For strong
non-linearity, the non-linear behaviors of Du$ng oscillators with periodic excitation are
still not clear. For instance, the resonance characterization of chaotic motion in the Du$ng
oscillators is still unsolved, although one used the zero of the Melnikov function to predict
the onset of such a motion in simple systems. This oscillator was also used to describe the
motion of a particle trapped in double-well potential in the presence of a monochronic
external force "eld [3]. In 1984, Reichl and Zheng [3, 4] used standard mapping, the
Chirikov overlap [5] and renormalization approaches [6] to investigate such chaotic
motion of the particle trapped in a double-well potential. In 1999, Luo and Han [7]
modi"ed the Chirikov overlap approach and improved the standard mapping approach to
predict the resonant characterization of chaotic motion in the Du$ng oscillator. Luo et al.
[8] developed a numerical approach to predict the onset of resonance in chaotic motions in
the separatrix band (or the stochastic layer) in the periodically driven twin-well Du$ng
oscillator. In 2000 Luo [9] developed an accurate standard mapping approach for the
analytical prediction of the appearance of resonance in such a layer, and Luo and Han [10]
also developed the incremental energy approach to analytically predict the appearance and
disappearance of the resonance in the chaotic motions. However, all the cases for the
Du$ng oscillators are based on the forced vibration. The resonant characterization of the
Du$ng oscillator under a parametric excitation was not investigated.

From linear parametric oscillations [11}13], the vibration responses are di!erent from
the forced vibration. In 1965, Tso and Caughey [14] investigated the parametric vibration
of a non-linear system through the slowly varying parameter technique, and in 1993, Mond
et al. [15] gave the stability analysis of non-linear Mathieu equation through the normal
form technique. However, the normal forms are obtained through the simpli"cation of
analytical expression of the vector "eld on the center manifold. Such a simpli"cation leads
to the normal form technique only applicable for a qualitative analysis of the vector #ow
near bifurcation only. Therefore, such a technique cannot further be used to predict chaotic
motions in parametric oscillators. The quasi-periodic Mathieu oscillators were also
investigated recently (e.g., references [16, 17]). In reference [17], the spectral balance
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method was used to get the frequency response solutions, but the analytical prediction of
chaotic motion in such oscillators was not given. From the literature survey, the chaotic
motion close to the region of the separatrix needs to be investigated.

In this paper, the conditions for the onset of primary resonance in the chaotic motion of
the Mathieu}Du$ng oscillator will be obtained. The numerical prediction for the
appearance of the speci"ed primary resonance in the separatrix band will be completed
though the energy spectrum. The width of chaotic motion band near the separatrix is also
computed. The analytical condition for the onset of the speci"ed primary resonance in the
separatrix band will be developed, and numerical simulations will be carried out to
demonstrate the resonant characteristics of chaotic motion in the separatrix band.

2. INNER SEPARATRIX BAND

For the given energy Ea satisfying H
0
"Ea(E

0
, the solution of the inner orbit without

the excitation in references [8, 18, 19] is
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where dn is the Jacobi-elliptic functions, K(k) the complete elliptic integral of the "rst kind
and k the modulus of the Jacobi-elliptic function, and the subscript a denotes the inside of
separatrix. The modulus ka , the response amplitude ea and the natural frequency ua are
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Using the unperturbed solution in equation (3) to approximate the perturbed one, the total
energy becomes
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As in references [18, 19], substitution of equation (3) into equations (5) and expansion of the
time-dependent term give
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where
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K D and K@(ka)"K(k@a), k@a"J1!k2a , i"Mm, nN. (7)

From equation (6), the resonant condition in reference [18] is

Mua"X. (8)

Note that the resonance relative to mu"nX is termed the (m : n) resonance. From the
traditional perturbation analysis, the resonant condition is 2Mua"X because such
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a perturbation analysis is based on a linear equation (i.e., the linear Mathieu equation). The
corresponding stability based on the linearized equation (Mathieu equation) may not exist.

The twin-well Du$ng oscillator has two potential wells. As in reference [5], the mapping
for investigation of chaotic motion will be developed through the energy and phase changes
for each period. The energy change in the two wells along the inner (M : 1) resonant orbit is
approximated [5, 18] by
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The phase change is from equation (4):
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Therefore, from equation (9) and phase change, the accurate whisker map for the inner band
of the Mathieu}Du$ng oscillator is
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. For the foregoing, the
strength of the stochasticity parameter is D"D*+0)97162 in references [20, 21] for
the transition to global stochasticity in equation (14). Therefore, the excitation strength for
the onset of a speci"c resonance in the inner separatrix band is approximately computed
through
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From equation (12), due to E
0
"0, the incremental energy approach [10] gives the

approximate condition for the onset of resonance in the inner separatrix band as
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3. OUTER SEPARATRIX BAND

In a same manner, for the given energy Eb satisfying H
0
"Eb'E

0
, the solution of the

outer orbit [8, 18] is
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The modulus kb, the response amplitude eb , and the natural frequency ub are
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Substitution of equation (18) into equation (2) and expansion of the time-dependent term
gives the total energy
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From equation (20), the resonant condition is

2Mub"X (22)

di!erent from the inner resonance in equation (8). In a similar fashion, the energy increment
along the outer (2M :1) resonant orbit is computed through
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The phase change is, from equation (19),
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Therefore, from equation (23) and phase change, the accurate whisker map for the outer
band of the Mathieu}Du$ng oscillator is
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The excitation strength for the onset of the (2M :1)-resonance in the outer separatrix band is
computed from the accurate standard mapping approach
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The incremental energy approach gives the approximate condition for the onset of the
(2M:1)-resonance in the outer separatrix band
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4. ENERGY SPECTRUM

Before the energy spectrum is computed, the averaging of the Hamiltonian energy is
discussed herein. For the inner separatrix band, except for the term of the (M :1)-resonance,
all other terms in H in equation (6) will average to zero over one period (¹a"2n/ua). The
averaging of the Hamiltonian for the (M :1) primary resonance (i.e., Mua"X) is strongly
dependent on the resonance order, and its magnitude H1 in the inner separatrix band for the
speci"c resonance is
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For the outer separatrix, the averaging of the Hamiltonian for the (2M :1) primary
resonance (i.e., 2Mub"X) gives the magnitude H1 in the outer separatrix band:

H1 +
n2e2bQ0
8k2bK2

=
+

m/1

=
+
n/1

(q
2m~1

q
2n~1

d2M
2(m`n~1)

#q
2m~1

q
2n~1

d2M2 Dm!n D ) . (31)

However, the averaging of the Hamiltonian energy is zero for non-resonant responses.
Equations (30) and (31) indicate that the Hamiltonian energy will undergo a large change
when the speci"c resonance is involved in the separatrix band, and the averaging of the
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Hamiltonian for the di!erent resonance is di!erent. In addition, the two averaged
Hamiltonian energies for the inner and outer separatrix bands are distinguishing as well.

Luo et al. [8] developed the energy spectrum approach for the numerical prediction of
the onset of the resonance in the stochastic layer (or the separatrix band). Therefore, such an
energy spectrum approach is used for determining the critical value of excitation frequency
for a given excitation strength. This energy spectrum is based on the energy of the PoincareH
mapping points of the separatrix band. The PoincareH mapping points for the
Mathieu}Du$ng oscillator are de"ned through the PoincareH section:
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The PoincareH map is P :RPR. The conservative energy of Mathieu}Du$ng oscillator for
the Nth iteration PoincareH mapping point is computed through
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and the corresponding minimum and maximum energies are obtained:
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Using the above de"nition, the maximum and minimum energy spectra are shown in
Figure 2(a) for Q

0
"0)1 and a

1
"a

2
"1)0 in equation (1). The maximum and minimum

energies are computed from 10 000 iterations of PoincareH map for each excitation frequency.
Xa(M:1) (or Xb(M:1)) denotes a maximum value of excitation frequency when the (M :1)-inner
inner (or (2M :1)-outer) resonance disappears in the separatrix band. The energy jumps
occur at Xb (2:1)

+2)15, Xb (4:1)
+3)3, Xb(6:1)

+3)95, Xb (8:1)
+4)55 for the outer separatrix band

and, at Xa (2:1)
+2)60 and Xa(3:1)

+3)5, Xa(4:1)
+4)30, Xa (5:1)

+4)85 for the inner separatrix
band. These speci"c values are critical excitation frequencies for the disappearance of the
speci"c resonance in the separatrix band. Note that for Q

0
"0)1, the resonant-separatrix of

the "rst order in the inner separatrix band cannot be observed because the Hamiltonian
Figure 2. Minimum and maximum energy spectra of the separatrix band (a) Q
0
"0)1 and (b) X"4 in the

Mathieu}Du$ng oscillator a
1
"a

2
"1)0.



Figure 3. The bandwidth varying with excitation frequency and strength: (a) Q
0
"0)1 and (b) X"4 for the

separatrix band of the Mathieu}Du$ng oscillator (a
1
"a

2
"1)0).
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arrives at the minimum energy !0)25 (for a
1
"a

2
"1)0) until this resonant-separatrix

appears. To interpret the critical values, consider X'X b (6:1)
+3)95 at Q

0
"0)1, the lower

than (6:1)-outer resonance in the outer band will not appear, and the lower than (3:1)-inner
resonance in the inner-band will not appear as well because of X'X b (6:1)

'X a(3:1). For
further illustration of the energy change in the separatrix band, the minimum and maximum
energies varying with excitation strength are presented in Figure 2(b) for X"4, the critical
values for the appearance of the speci"c resonance are Qb(6:1)

0
+0)22, Qb(4:1)

0
+0)44,

Qb(2:1)
0

+0)58 and Qa(4:1)
0

+0)05, Qa(5:1)
0

+0)48.
In 1890, Poincare [22] investigated the splitting of the separatrix in non-linear

Hamiltonian system. Since then, the layer width was estimated qualitatively through the
perturbation theory (e.g., references [22}24]). Using the de"nition of the layer width in
reference [8], the separatrix bandwidth is computed through

w, min
t3[0,R)

Ex(Emax, t)!x (Emin, t)E,Exmax!xminE, (35)

where EzE is a norm. The detail for the bandwidth was given in reference [8]. For the
Du$ng-related oscillator, the separatrix bandwidth is Dxmax!xminD at y"0 which can be
determined numerically. Based on the minimum and maximum energies in Figure 2,
the corresponding bandwidths are computed, as shown in Figure 3. These indicate that the
bandwidth is strongly dependent on the resonance order, and not linear to either excitation
frequency or excitation strength. Such a solution shows that the qualitative results in
references [22}25] may not be true because those analyses were based on perturbation and
linearization.

5. COMPARISON

To compare the analytical predictions with the numerical ones of the onset of resonance
in the separatrix band, the resonant conditions are illustrated in Figure 4 through the
excitation frequency versus the unperturbed Hamiltonian energy, where the order of
the resonance in the inner and outer bands are clearly demonstrated. When the conservative
energy is given, the excitation frequency for a speci"c resonance can be determined.



Figure 4. The resonant conditions for the separatrix band of the Mathieu}Du$ng oscillator (a
1
"a

2
"1)0).

Figure 5. Conditions for the onset of a speci"c resonance in (a) the outer band and (b) the inner band of the
Mathieu}Du$ng oscillator with weak excitation (a

1
"a

2
"1)0) ===, incremental energy; } - } -, standard

mapping; s*s*, numerical.
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The numerical and analytical predictions of excitation strengths for the weak and strong
excitation are illustrated in Figures 5 and 6 respectively. The solid and dashed curves denote
the analytical predictions based on the incremental energy approach and accurate standard
map method, and the hollow circle curve represents the numerical predictions based on the
energy spectrum approach. The incremental energy approach gives a good prediction for
week excitation compared to the numerical prediction. However, such a prediction for
strong excitation, illustrated in Figure 6, becomes worse because the sub-resonance e!ect is
not considered in the incremental energy approach and the energy increments are
approximately computed through the unperturbed orbits rather than the perturbed ones.
The accurate standard mapping approach gives a poor prediction for the resonance in the
separatrix band of Mathieu}Du$ng oscillator because of linearization of accurate whicker
mapping in the period-1 of the speci"ed resonance.



Figure 6. Conditions for the onset of a speci"c resonance in (a) the outer band and (b) the inner band of the
Mathieu}Du$ng oscillator with strong excitation (a

1
"a

2
"1)0) ===, incremental energy; } - } -, standard

mapping; s*s*, numerical.

Figure 7. PoincareH mapping sections of the chaotic motion of the Mathieu}Du$ng oscillator at (a
1
"a

2
"1,

Q
0
"0)05): (a) the (2:1)-resonance in the outer band (X"1)65 less than and close to Xb(2:1)

cr
), (b) the (4:1)-resonance

and (2:1)-resonance in the outer and inner bands (X"2)45 less than and close to Xa(2:1)
cr

and Xb(4:1)
cr

), (c) the
(4:1)-resonance in the outer band (X"2)7 less than and close to Xb(4:1)

cr
), and (d) the (6:1)-resonance and

(3:1)-resonance in the outer and inner bands (X"3)32 less than and close to Xa(3:1)
cr

and Xb(6:1)
cr

).
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6. NUMERICAL EXPERIMENTATION

For numerical simulations of resonance-characterized chaotic motion in the separatrix
band, a second order symplectic scheme [26, 27] is used with time step Dt"10~6}10~7¹,
where ¹"2n/X, and a precision of 10~8. When a

1
"a

2
"1)0 and Q

0
"0)05, the chaotic

motion in the generic separatrix band are generated through 20 000 PoincareH mappings of
equation (1), as illustrated in Figure 7 for X"1)65, 2)45, 2)7, 3)32. In Figure 7(a), the chaotic
motion in the separatrix band is characterized by the (2:1) outer resonance owing to
X"1)65(Xb(2:1)

cr
+1)67. However, all the other resonances are submerged in the

separatrix band because Q
0
"0)05AQcr

0
for X"1)65. With increasing X over Xb(2:1)

cr
+1)67

for speci"ed excitation, the (2:1)-outer resonance will not exist in the separatrix band.
Therefore, in Figure 7(b) at X"2)45, it is observed that the (2:1)-inner resonance and
(4:1)-outer resonance are embedded in the separatrix because this excitation frequency is
less than and close to Xa(2:1)

cr
+2)5 compared to Xb(4:1)

cr
+2)8. The (4:1)-outer resonant

separatrix is partially destroyed by its own sub-resonance, and its own width become
thicker. However, the (2:1)-inner resonant separatrix is relatively thin. When X further
increases over Xa (2:1)

cr
, the (2:1)-inner resonance will disappear. Therefore, for X"2)7, only

the outer (4:1)-resonance is in the generic separatrix band, as shown in Figure 7(c). That is
because X"2)7'Xa(2:1)

cr
and X"2)7(Xb(4:1)

cr
. It is clearly observed that the width of the

(4:1)-outer resonant separatrix becomes thinner compared to the one in Figure 7(b). When
X"3)32 is less than and close to Xa(3:1)

cr
+3)35 and Xb(6:1)

cr
+3)55 is used for simulations,

the (3:1)-inner and (6:1)-outer resonances are involved in the separatrix band, which is
clearly shown in Figure 7(d). From the above numerical simulations, the separatrix
bandwidth becomes smaller when the lower order resonance disappears in the separatrix
band with increasing excitation frequency for a speci"ed excitation strength.

7. CONCLUSION

The resonant characterization of chaotic motions in the generic separatrix band of the
Mathieu}Du$ng oscillator is investigated. The resonant conditions for such an oscillator
are obtained, and the resonant orders inside and outside the generic separatrix are (M :1)
and (2M :1) respectively. Based on the resonant conditions, the analytical conditions for
prediction of the onset of such a speci"c resonance in the separatrix band are developed
through the accurate standard mapping and incremental energy approaches. However, the
incremental energy approach gives a very good prediction compared to the numerical
predictions. In addition, the bandwidth is computed and it is strongly dependent on the
resonance. The stability based on the linearized equation or linear Mathieu equation may
not exist for such a Mathieu}Du$ng oscillator with a twin-well potential. These results are
applicable for post-buckled structures.
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